Ticker and Tickers#

Class#

The Ticker module, allows you to access ticker data in a Pythonic way.

Ticker(ticker[, session, proxy])

Tickers(tickers[, session])

Sample Code#

The Ticker module, allows you to access ticker data in a Pythonic way.

import yfinance as yf

msft = yf.Ticker("MSFT")

# get all stock info
msft.info

# get historical market data
hist = msft.history(period="1mo")

# show meta information about the history (requires history() to be called first)
msft.history_metadata

# show actions (dividends, splits, capital gains)
msft.actions
msft.dividends
msft.splits
msft.capital_gains  # only for mutual funds & etfs

# show share count
msft.get_shares_full(start="2022-01-01", end=None)

# show financials:
msft.calendar
msft.sec_filings
# - income statement
msft.income_stmt
msft.quarterly_income_stmt
# - balance sheet
msft.balance_sheet
msft.quarterly_balance_sheet
# - cash flow statement
msft.cashflow
msft.quarterly_cashflow
# see `Ticker.get_income_stmt()` for more options

# show holders
msft.major_holders
msft.institutional_holders
msft.mutualfund_holders
msft.insider_transactions
msft.insider_purchases
msft.insider_roster_holders

msft.sustainability

# show recommendations
msft.recommendations
msft.recommendations_summary
msft.upgrades_downgrades

# show analysts data
msft.analyst_price_targets
msft.earnings_estimate
msft.revenue_estimate
msft.earnings_history
msft.eps_trend
msft.eps_revisions
msft.growth_estimates

# Show future and historic earnings dates, returns at most next 4 quarters and last 8 quarters by default.
# Note: If more are needed use msft.get_earnings_dates(limit=XX) with increased limit argument.
msft.earnings_dates

# show ISIN code - *experimental*
# ISIN = International Securities Identification Number
msft.isin

# show options expirations
msft.options

# show news
msft.news

# get option chain for specific expiration
opt = msft.option_chain('YYYY-MM-DD')
# data available via: opt.calls, opt.puts

To initialize multiple Ticker objects, use

import yfinance as yf

tickers = yf.Tickers('msft aapl goog')

# access each ticker using (example)
tickers.tickers['MSFT'].info
tickers.tickers['AAPL'].history(period="1mo")
tickers.tickers['GOOG'].actions

For tickers that are ETFs/Mutual Funds, Ticker.funds_data provides access to fund related data.

Funds’ Top Holdings and other data with category average is returned as pd.DataFrame.

import yfinance as yf
spy = yf.Ticker('SPY')
data = spy.funds_data

# show fund description
data.description

# show operational information
data.fund_overview
data.fund_operations

# show holdings related information
data.asset_classes
data.top_holdings
data.equity_holdings
data.bond_holdings
data.bond_ratings
data.sector_weightings

If you want to use a proxy server for downloading data, use:

import yfinance as yf

msft = yf.Ticker("MSFT")

msft.history(..., proxy="PROXY_SERVER")
msft.get_actions(proxy="PROXY_SERVER")
msft.get_dividends(proxy="PROXY_SERVER")
msft.get_splits(proxy="PROXY_SERVER")
msft.get_capital_gains(proxy="PROXY_SERVER")
msft.get_balance_sheet(proxy="PROXY_SERVER")
msft.get_cashflow(proxy="PROXY_SERVER")
msft.option_chain(..., proxy="PROXY_SERVER")
...

To initialize multiple Ticker objects, use Tickers module

import yfinance as yf

tickers = yf.Tickers('msft aapl goog')

# access each ticker using (example)
tickers.tickers['MSFT'].info
tickers.tickers['AAPL'].history(period="1mo")
tickers.tickers['GOOG'].actions